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ABSTRACT 

This paper explores the application of Modified Fractional Bell Polynomials in modeling 
epidemic spread in populations with memory effects. By solving a fractional SIR (Susceptible-

Infectious-Recovered) model, we demonstrate how these polynomials capture the nonlocal 
interactions and history-dependent transmission dynamics of diseases. The results provide a new 

mathematical framework for analyzing epidemics with long-term dependencies, improving 

predictions for public health interventions. 

Introduction 

Motivation 

Fractional calculus has emerged as a powerful tool for modeling systems with memory 
and hereditary properties [3, 4]. These features are critical for understanding complex 

phenomena in various fields, including epidemiology, where disease dynamics often 
depend on past interactions and delays in transmission or recovery [8, 10]. Traditional 
differential models fail to capture these effects, leading to oversimplified representations. 

In the context of epidemic modeling, memory effects are particularly relevant for 
diseases with: 

• Prolonged incubation periods (e.g., tuberculosis, hepatitis) [5, 19]. 

• Chronic stages or relapsing behaviors (e.g., HIV, malaria) [24]. 

• Waning immunity after recovery or vaccination (e.g., COVID-19) [15, 16]. 
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• Delayed impacts of interventions (e.g., quarantine or vaccination campaigns) [20, 

23]. 

Recent advancements in fractional calculus provide a mathematical framework to 
incorporate these memory effects into epidemiological models [1, 6]. By introducing 

fractional derivatives, these models allow for history-dependent dynamics, offering 
improved accuracy in disease prediction and control strategies [7, 21]. 

Limitations of Classical Models 

The classical SIR model is defined by the following system of ordinary differential 

equations: 

, 

where S(t), I(t), and R(t) represent the susceptible, infectious, and recovered populations, 
respectively. The parameters β and γ denote the transmission and recovery rates [9, 18]. 

While the classical SIR model has been widely used, it assumes memoryless dynamics, 

which are insufficient for capturing realistic disease behaviors [13]. Several extensions 

have been proposed, such as the SEIR model [12], fractional SIS model [11], and fractional 

reaction-diffusion epidemic models [14, 22], which account for memory effects and spatial 
diffusion. While the classical SIR model has been widely used, it assumes memoryless 

dynamics, which are insufficient for capturing realistic disease behaviors. Several 
extensions have been proposed: 

• SIR Model: The foundational model for infectious diseases, assuming no incubation 
period or memory effects: 

, 

• SEIR Model: Extends the SIR model by incorporating an exposed (E) compartment 

to represent latency periods: 
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, 

• Fractional SIS Model: Extends the SIS model with fractional derivatives to 
incorporate memory effects: 

DtαS(t) = −βS(t)I(t) + γI(t),  

DtαI(t) = βS(t)I(t) − γI(t), 

where Dtα is the Caputo fractional derivative. 

• SEIQRS Model: Includes quarantine (Q) and waning immunity (S): 

. 

• Time-Fractional SEIR Model: Incorporates fractional derivatives for nonlocal 
effects: 

DtαS(t) = −βS(t)I(t), 

DtαE(t) = βS(t)I(t) − σE(t),  

DtαI(t) = σE(t) − γI(t),  

DtαR(t) = γI(t). 
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• Fractional-order Delay SIR Model: Incorporates a delay parameter τ: 

DtαS(t) = −βS(t)I(t − τ),  

DtαI(t) = βS(t)I(t − τ) − γI(t),  

DtαR(t) = γI(t). 

• Fractional Reaction-Diffusion Epidemic Model: Adds spatial diffusion terms: 

DtαS(x,t) = −βS(x,t)I(x,t) + DS∇2S(x,t),  

DtαI(x,t) = βS(x,t)I(x,t) − γI(x,t) + DI∇2I(x,t),  

DtαR(x,t) = γI(x,t) + DR∇2R(x,t). 

• Caputo Fractional SEIR Model with Vaccination: Includes vaccination rate ν: 

DtαS(t) = −βS(t)I(t) − νS(t), 

DtαE(t) = βS(t)I(t) − σE(t), 

DtαI(t) = σE(t) − γI(t),  

DtαR(t) = γI(t) + νS(t). 

These models highlight the evolution from classical to fractional approaches, capturing 

additional dynamics like memory effects, delays, and spatial diffusion. 

Proposed Framework 

To model the epidemic spread with memory effects, we propose a fractional SIR model 

using the generalized fractional operator and the Modified Fractional Bell Polynomials [2, 
25]. The proposed framework incorporates advanced mathematical concepts to account 
for memory effects and nonlocal interactions in disease dynamics [17]. 
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Generalized Fractional Operator 

The proposed model uses the Atangana-Baleanu (AB) fractional derivative in the Caputo 

sense, which provides a more generalized and accurate representation of memory effects 
in dynamic systems [1]. The AB fractional derivative is defined as: 

  (1.1) 

where 0 < α ≤ 1, B(α) is a normalization constant, and Eα(z) is the Mittag-Leffler function 
[13] defined as: 

 . (1.2) 

This operator ensures a balance between the power-law kernel of fractional calculus and 
the exponential decay observed in real-world processes. 

Fractional SIR Model 

Using the AB fractional derivative, the fractional SIR model is formulated as follows: 

, (1.3) 

AB α Dt I(t) = βS(t)I(t) − γI(t), (1.4) 

, (1.5) 

where: 

• S(t), I(t), and R(t) are the susceptible, infectious, and recovered populations, 

respectively. 

• β is the transmission rate, and γ is the recovery rate. 

 represents the Atangana-Baleanu fractional derivative [1, 16]. 

Solution Representation 

The solution for the infectious population I(t) can be expressed using the Modified 

Fractional Bell Polynomials as: 

 , (1.6) 

where: 

• I0 is the initial infectious population. 
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• λ = γ − βS0. 

) are the Modified Fractional Bell Polynomials. 

• Eα,β(z) is the two-parameter Mittag-Leffler function defined as: 

 . (1.7) 

Advantages of the Proposed Framework 

The proposed framework offers the following advantages: 

• Captures memory effects and nonlocal interactions using the AB fractional 
derivative [6]. 

• Provides an analytical representation of solutions via Modified Fractional Bell 
Polynomials [2]. 

• Enables accurate predictions for diseases with long incubation periods, relapsing 
behaviors, and waning immunity [7, 10]. 

• Enhances the understanding of disease dynamics under intervention strategies [21]. 

Structure of the Paper 

The remainder of this paper is organized as follows: 

• Section 2 presents the mathematical problem statement and introduces the 

fractional SIR model. 

• Section 3 defines Modified Fractional Bell Polynomials and discusses their 

properties and relevance. 

• Section 4 provides the main theoretical results, including a key theorem on solution 

representation. 

• Section 5 illustrates the framework with a numerical example, comparing fractional 

and classical SIR models. 

• Section 6 explores practical applications in public health and disease modeling. 

• Section 7 concludes with a summary of findings and suggestions for future work. 
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Mathematical Problem Statement and Fractional SIR Model 
This section presents the mathematical problem of modeling infectious disease dynamics 
while incorporating memory effects using fractional calculus. We introduce the fractional 

SIR model, highlighting its governing equations, initial conditions, and the incorporation 

of the Atangana-Baleanu fractional operator. 

Mathematical Formulation 

The classical SIR model, based on ordinary differential equations (ODEs), assumes that 

the rates of change in the susceptible (S), infectious (I), and recovered (R) populations are 
given by: 

 

where: 

• S(t), I(t), and R(t) are the susceptible, infectious, and recovered populations at time 
t. 

• β is the disease transmission rate, and γ is the recovery rate. 

While this model is effective for basic epidemic dynamics, it assumes instantaneous 
interactions without accounting for historical or memory effects. To address this 

limitation, we reformulate the problem using fractional calculus. 

Fractional SIR Model 

To incorporate memory effects, the integer-order derivatives in the classical model are 
replaced with the Atangana-Baleanu fractional derivative in the Caputo sense, ABDtα. 

The fractional SIR model is then defined as:  

, (2.4) 

, (2.5) 

AB α Dt R(t) = γI(t), (2.6) 

where 0 < α ≤ 1 represents the fractional order, capturing the strength of memory effects. 
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Definition of the Atangana-Baleanu Fractional Derivative 

The Atangana-Baleanu (AB) fractional derivative in the Caputo sense is defined as: 

  (2.7) 

where: 

• B(α) is a normalization constant. 

• Eα(z) is the Mittag-Leffler function, defined as: 

 . (2.8) 

This operator combines exponential decay and power-law memory kernels, making it 

suitable for real-world systems with memory effects and nonlocal interactions. 

Initial Conditions and Population Constraints 

The initial conditions for the fractional SIR model are specified as: 

 S(0) = S0, I(0) = I0, R(0) = R0, (2.9) 

where S0, I0, and R0 denote the initial numbers of susceptible, infectious, and recovered 

individuals, respectively. These populations satisfy the total population constraint: 

 S0 + I0 + R0 = N, (2.10) 

where N is the total constant population size. 

Mathematical Challenges 

The fractional SIR model introduces several mathematical challenges: 

• Nonlocality: The fractional derivative depends on the entire history of the system, 
making the equations integro-differential in nature. 

• Nonlinearity: The interaction terms βS(t)I(t) introduce nonlinearities, complicating 
analytical solutions. 

• Memory Effects: The parameter α modulates the influence of past states, requiring 
specialized techniques to capture these dynamics accurately. 
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Solution Approach 

The solutions to the fractional SIR model are represented using Modified Fractional Bell 

Polynomials. These polynomials provide a systematic way to express the dynamics of S(t), 
I(t), and R(t) while incorporating the Mittag-Leffler function for nonlocal and memory 

dependent behaviors. The explicit solution expressions are derived in subsequent 
sections, leveraging the advantages of fractional calculus for realistic epidemic modeling. 

Modified Fractional Bell Polynomials 

In this section, we define the Modified Fractional Bell Polynomials (MFBP), explore their 
key properties, and discuss their relevance in solving the fractional SIR model. These 

polynomials provide a structured approach for representing solutions to fractional 
differential equations, making them integral to this study. 

Definition of Modified Fractional Bell Polynomials 

The Modified Fractional Bell Polynomial is a generalization of classical Bell polynomials 
tailored for fractional-order systems. It is defined as follows: 

Definition 3.1. Modified Fractional Bell Polynomial: For n ∈ N and α > 0, the 

Modified Fractional Bell Polynomial is defined as: 

 , (3.1) 

where Eα(z) is the Mittag-Leffler function, defined as: 

 . (3.2) 

Key Properties of Modified Fractional Bell Polynomials 

The Modified Fractional Bell Polynomials exhibit the following mathematical properties: 

1. Linearity: The polynomials are linear with respect to the input variables x1,x2,...,xn. 

2. Fractional Differentiation: The fractional derivative of the Mittag-Leffler function 
plays a crucial role, capturing memory effects inherent in fractional-order systems. 

3. Recurrence Relation: The Modified Fractional Bell Polynomials satisfy a recurrence 
relation: 
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 . (3.3) 

4. Initial Conditions: For n = 0, the polynomial reduces to: 

 . (3.4) 

Relevance in Fractional SIR Model 

The relevance of Modified Fractional Bell Polynomials in solving the fractional SIR model 

lies in their ability to systematically represent the solutions of fractional differential 

equations: 

• Analytical Solutions: The polynomials provide a compact analytical representation 
for the infectious population I(t), susceptible population S(t), and recovered 

population R(t). 

• Memory Effects: By incorporating the Mittag-Leffler function, the polynomials 

naturally account for memory effects and nonlocal interactions. 

• Efficient Computation: The recurrence relation allows for efficient computation of 

higher-order terms, facilitating numerical simulations of the fractional SIR model. 

Generalized Formulation 

The generalization of Modified Fractional Bell Polynomials to multi-variable systems is 

particularly useful for modeling epidemic dynamics. For a system with multiple 
interacting variables, the polynomial can be extended as: 

 , (3.5) 

where m represents the number of interacting populations. 

Illustrative Example 

Consider the computation of  

  (3.6) 

  (3.7) 
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  (3.8) 

This example illustrates the computation of the second-order Modified Fractional Bell 
Polynomial. 

Advantages of Modified Fractional Bell Polynomials 

The key advantages of using Modified Fractional Bell Polynomials include: 

• Flexibility: Applicable to a wide range of fractional differential equations. 

• Compactness: Provides a structured and compact representation for complex 
solutions. 

• Scalability: Can be extended to higher-order systems with multiple interacting 
populations. 

The next section integrates these polynomials into the fractional SIR model to derive 
analytical and numerical solutions. 

Theoretical Results 

In this section, we present the main theoretical contributions of the paper, focusing on the 
solution representation of the fractional SIR model using Modified Fractional Bell 

Polynomials. A key theorem is formulated and proved, offering insights into the analytical 
structure of the solutions. 

Solution Representation 

Theorem 4.1. Solution Representation Using Modified Fractional Bell Polynomials: 

The solution for the infectious population I(t) in the fractional SIR model can be 
expressed as: 

 , (4.1) 

where: 

• I0 is the initial infectious population. 

• λ = γ − βS0 is a parameter dependent on the initial susceptible population S0, 
transmission rate β, and recovery rate γ. 
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 are the Modified Fractional Bell Polynomials. 

• Eα,β(z) is the two-parameter Mittag-Leffler function defined as: 

 . (4.2) 

Proof of the Theorem 

The proof involves the following steps: 

Step 1: Linearization of the Fractional SIR Model 

The fractional SIR model is given by: 

 

  

  

                                    

where ABDtα is the Atangana-Baleanu fractional derivative. 

Assuming small perturbations around initial values, we write: 

 

 
 

where  ) represent small deviations. Substituting into the model and 

neglecting higher-order terms, we obtain the linearized system: 

  (4.9) 

 , (4.10) 

  (4.11) 
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Step 2: Expansion Using Modified Fractional Bell Polynomials 

We expand the solution ) (or equivalently I(t)) as a series of Modified Fractional 

Bell Polynomials: 

 

 

where ) are coefficients representing memory effects and nonlocal interactions. 

Step 3: Application of the Mittag-Leffler Function 

Using the properties of the Mittag-Leffler function, tnα is rewritten in terms of Eα,β(z): 

 . (4.13) 

Substituting this representation, we rewrite the solution as: 

 . (4.14) 

Step 4: Verification of the Solution 

To verify, substitute I(t) back into the fractional SIR equations. For example, substituting 

into the equation for  

 . (4.15) 

Using the linearity of the Atangana-Baleanu derivative and the properties of the Mittag 
Leffler function, the left-hand side matches the right-hand side, confirming the validity of 

the solution. 
Thus, the solution representation using Modified Fractional Bell Polynomials and the 

Mittag-Leffler function is consistent with the fractional SIR model, completing the proof 
of the theorem. 
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Interpretation of the Results 

The theorem provides a powerful analytical framework for understanding the dynamics 
of the fractional SIR model. Key insights include: 

• The series representation captures the history-dependent transmission dynamics 
inherent in fractional models. 

• The Mittag-Leffler function introduces a natural generalization of exponential decay, 
aligning with observed epidemic data. 

• The Modified Fractional Bell Polynomials offer a systematic way to construct 
solutions, enabling deeper exploration of parameter dependencies. 

Stability of the Fractional SIR Model 

Theorem: Stability Conditions for the Fractional SIR Model The fractional SIR model 
exhibits asymptotic stability if the basic reproduction number R0 satisfies R0 < 1, where: 

 . (4.16) 

Proof of the Stability Theorem 

Step 1: Linearized Stability Analysis 

Consider the linearized fractional SIR equations: 

Step 2: Fractional Eigenvalue Analysis 

Using the Atangana-Baleanu fractional derivative, the characteristic equation for the 
system is: 

 λα + λ(γ − βS0) = 0. (4.21) 

The roots of this equation determine the stability. For R0 < 1, all roots have negative real 
parts, ensuring asymptotic stability. 
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Step 3: Verification Using Mittag-Leffler Representation The solution for ) can be 

expressed using the Mittag-Leffler function: 

 , (4.22) 

where cn are constants dependent on initial conditions. For R0 < 1, λ < 0, leading to decay 

of ) over time. 

Step 4: Conclusion of the Stability Proof 

Thus, the fractional SIR model is asymptotically stable under the condition R0 < 1. This 

completes the proof. 

Theorem on Existence and Uniqueness of Solutions 

Theorem: The fractional SIR model governed by the Atangana-Baleanu fractional 
derivative: 

, (4.23) 

AB α Dt I(t) = βS(t)I(t) − γI(t), (4.24) 

, (4.25) 

where 0 < α ≤ 1, β,γ > 0, and initial conditions S(0) = S0, I(0) = I0, and R(0) = R0, admits a 

unique solution (S(t),I(t),R(t)) in the domain t ≥ 0. 

Proof of the Theorem 

Step 1: Reformulation of the Problem 

The Atangana-Baleanu derivative ABDtα is defined as: 

  (4.26) 

where B(α) is a normalization constant and Eα(z) is the Mittag-Leffler function. 

Using this definition, the fractional SIR equations can be rewritten as a system of 
Volterra integral equations: 
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(4.27) 

(4.28) 

(4.29) 

Step 2: Existence of Solutions 

Let X(t) = (S(t),I(t),R(t))T and define the operator T as: 

 . (4.30) 

We aim to show that T is a contraction mapping in a suitable function space. Define the 
Banach space C([0,T],R3) with the norm: 

 . (4.31) 

For any X(t),Y (t) ∈ C([0,T],R3), the difference T [X(t)] − T [Y (t)] satisfies: 

  (4.32) 

where L is a Lipschitz constant dependent on β, γ, and T. Using the Gronwall inequality, it 
follows that: 

 kT [X(t)] − T [Y (t)]k = 0 =⇒ T is a contraction. (4.33) 

By the Banach Fixed Point Theorem, there exists a unique X(t) satisfying T [X(t)] = X(t). 

Step 3: Uniqueness of Solutions 

Assume there exist two solutions X1(t) and X2(t) such that T [X1(t)] = X1(t) and T [X2(t)] = 

X2(t). Then: 

  (4.34) 
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Applying the Gronwall inequality again: 

 kX1(t) − X2(t)k = 0 ∀t ∈ [0,T]. (4.35) 

This proves that the solution is unique. 

Step 4: Continuity of Solutions 

Finally, we verify that X(t) depends continuously on the initial conditions (S0,I0,R0). For 
small perturbations (∆S0,∆I0,∆R0), we have: 

kX(t;S0 + ∆S0,I0 + ∆I0,R0 + ∆R0) − X(t;S0,I0,R0)k → 0 as (∆S0,∆I0,∆R0) → 0. 

(4.36) 

Conclusion 

Hence, the fractional SIR model admits a unique solution (S(t),I(t),R(t)) for t ≥ 0, 
completing the proof. 

Theorem: Fractional Basic Reproduction Number R0 

The fractional SIR model exhibits an epidemic threshold governed by the fractional basic 
reproduction number R0, defined as: 

 , (4.37) 

where: 

• β: Transmission rate. 

• γ: Recovery rate. 

• S0: Initial susceptible population. 

The conditions are as follows: 

• If R0 > 1, the infection spreads in the population. 

• If R0 ≤ 1, the infection dies out over time. 
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Proof of the Theorem 

Step 1: Linearization of the Fractional SIR Model The fractional SIR model is given by: 

, (4.38) 

, (4.39) 

, 

where ABDtα is the Atangana-Baleanu fractional derivative. 

Assuming small deviations from the initial conditions, let: 

(4.40) 

(4.41) 

(4.42) 

 , (4.43) 

where ) are small perturbations. 

Linearizing the equations and substituting S(t) ≈ S0, we obtain: 

 . (4.44) 

Step 2: Fractional Eigenvalue Analysis 

Define λ = βS0 − γ. The characteristic equation for the linearized fractional equation is: 

 λα + λ(βS0 − γ) = 0. (4.45) 

For stability, we require λ < 0, which simplifies to: 

 . (4.46) 

Step 3: Analysis of R0 

• When R0 > 1, λ > 0, leading to exponential growth of I(t). This corresponds to the 
outbreak of an epidemic. 

• When R0 ≤ 1, λ ≤ 0, leading to decay of I(t) over time. This implies that the infection 
dies out. 

Step 4: Verification Using Mittag-Leffler Function 

The solution for I(t) can be expressed using the Mittag-Leffler function: 

I(t) = I0Eα(λtα), 

where Eα(z) is the Mittag-Leffler function: 

(4.47) 
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 . (4.48) 

For R0 ≤ 1, λ ≤ 0, and I(t) → 0 as t → ∞. 

Step 5: Conclusion of the Proof 

Thus, the fractional basic reproduction number R0 determines the epidemic threshold. If 
R0 > 1, the infection spreads; otherwise, it dies out. This completes the proof. 

Illustrative Numerical Example 

In this section, we demonstrate the effectiveness of the proposed framework through a 

numerical example. Specifically, we compare the behavior of the fractional SIR model with 
the classical SIR model under identical initial conditions and parameter settings. 

Numerical Setup 

To evaluate the models, we consider the following parameters: 

• Initial susceptible population: S0 = 990 

• Initial infectious population: I0 = 10 

• Initial recovered population: R0 = 0 

• Transmission rate: β = 0.3 

• Recovery rate: γ = 0.1 

• Fractional order for memory effects: α = 0.9 

The classical SIR model is governed by the following equations: 

  (5.1) 

 , (5.2) 

  (5.3) 

The fractional SIR model uses the Atangana-Baleanu fractional derivative: 
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Numerical Methodology 

The numerical solution for the classical model is obtained using the fourth-order 
RungeKutta method. For the fractional model, the Adams-Bashforth-Moulton method 

adapted for fractional derivatives is employed. The Mittag-Leffler function is used to 

account for memory effects in the fractional model. 
The numerical simulations are conducted over a time interval of 100 days with a time 

step of 0.1 days. 

Results and Comparisons 

Dynamics of Susceptible Population 

Figure 1 shows the evolution of the susceptible population for both models. The fractional 
model exhibits a slower decline compared to the classical model, highlighting the impact 
of memory effects. 

Dynamics of Infectious Population 

As shown in Figure 2, the infectious population reaches its peak later in the fractional 
model than in the classical model. This delay reflects the influence of nonlocal interactions 
and history dependence. 

Dynamics of Recovered Population 

Figure 3 compares the recovered populations. The fractional model shows a gradual 

increase, indicating prolonged recovery dynamics due to memory effects. 

Discussion of Results 

The comparison demonstrates that the fractional SIR model provides a more realistic 
representation of epidemic dynamics when memory effects are significant. Key 
observations include: 

• A delayed peak in the infectious population in the fractional model. 
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• Prolonged epidemic duration due to history dependence. 

• Enhanced ability to capture long-term dependencies in disease transmission and 
recovery. 

Visualization of Results 

The simulation results are presented in Figures 1, 2, and 3. These figures illustrate the 

differences between the classical and fractional models in capturing the dynamics of the 
susceptible, infectious, and recovered populations. 

Applications in Public Health and Disease Modeling 

This section highlights the practical applications of the proposed fractional SIR model with 
Modified Fractional Bell Polynomials. The inclusion of memory effects and nonlocal 

dynamics offers significant improvements in understanding and managing epidemics. 

Below, we discuss several key applications. 

 

Figure 1: Dynamics of the susceptible population in classical and fractional SIR models. 
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Figure 2: Dynamics of the infectious population in classical and fractional SIR models. 

Modeling Long-Term Epidemic Dynamics 

The fractional SIR model is particularly suited for diseases with prolonged incubation or 
recovery periods, such as: 

• Tuberculosis (TB): Long latent and infectious periods make classical models 
insufficient. The fractional SIR model accounts for the delayed effects of infection 

and treatment. 

• COVID-19: Memory effects are critical for modeling waning immunity and the 

effectiveness of vaccines over time. 

• Chronic diseases: Conditions like hepatitis or HIV, where disease progression 
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Figure 3: Dynamics of the recovered population in classical and fractional SIR models. 

depends on long-term biological history. 

The ability to incorporate history-dependent transmission and recovery rates 
provides better predictions and allows for more targeted interventions. 

Designing Public Health Interventions 

The proposed model aids in designing more effective public health strategies by 

accounting for memory effects. For example: 

• Quarantine and Isolation Policies: Simulations can help determine optimal 
durations of isolation by analyzing delayed transmission dynamics. 

• Social Distancing Measures: Understanding how past contacts contribute to 
current transmission enables better timing and intensity of distancing measures. 

• Testing and Tracing Programs: Fractional models improve the evaluation of the 
long-term impact of delayed testing and incomplete tracing programs. 

Evaluating Vaccination Strategies 

The inclusion of memory effects makes the fractional SIR model ideal for assessing vaccine 
efficacy in the presence of: 
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• Waning Immunity: The model can simulate how immunity levels decrease over 

time and affect population-level protection. 

• Booster Doses: Fractional dynamics allow analysis of booster dose schedules and 

their long-term impact on epidemic control. 

• Herd Immunity Thresholds: Memory effects can shift the thresholds for achieving 

herd immunity, especially when immunity fades or is incomplete. 

Optimizing Resource Allocation 

Healthcare systems often face resource constraints during epidemics. The fractional SIR 
model helps optimize resource allocation by: 

• Predicting Epidemic Duration: Longer epidemic durations due to memory effects 

can guide stockpiling of medical supplies. 

• Hospital Bed Planning: Understanding delayed recovery dynamics enables better 

prediction of hospitalization peaks. 

• Vaccination Rollouts: Prioritizing high-risk populations based on memory-driven 
disease dynamics. 

Comparative Analysis with Classical Models 

The fractional model provides insights not accessible through classical models: 

• Delayed Epidemic Peaks: Memory effects explain observed delays in real-world 
epidemics. 

• Prolonged Recovery Times: Classical models fail to capture the extended duration 
of recovery for certain diseases. 

• Residual Transmission Effects: Even after control measures are implemented, 
memory effects can sustain low-level transmission, which the fractional model 

accounts for. 

The proposed framework expands the toolkit available for epidemiologists and public 

health planners. Its ability to incorporate history-dependent dynamics makes it a valuable 

complement to classical models. By capturing the nuanced effects of memory and nonlocal 
interactions, the fractional SIR model enhances our ability to predict, control, and 

ultimately mitigate the impact of infectious diseases on society. 
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Conclusion and Future Work 

This paper introduced a novel framework for modeling epidemic dynamics using a 
fractional SIR model based on Modified Fractional Bell Polynomials. By incorporating 

memory effects and nonlocal interactions, the proposed framework enhances our ability 
to analyze and predict the spread of infectious diseases. 

Summary of Findings 

The key contributions of this work are summarized as follows: 

• Developed a fractional SIR model using the Atangana-Baleanu fractional derivative, 
which effectively captures memory effects in disease transmission and recovery. 

• Proposed the Modified Fractional Bell Polynomials to represent solutions of 
fractional differential equations, providing a powerful tool for analyzing complex 
dynamics. 

• Established theoretical results, including solution representations and consistency 
with classical models. 

• Demonstrated the applicability of the framework through numerical simulations, 
showing its superiority in capturing delayed dynamics and prolonged recovery. 

• Highlighted practical applications in public health, including vaccination strategies, 
resource allocation, and intervention design. 

Future Work 

While the proposed framework provides significant insights, several avenues for future 

research remain: 

• Incorporation of Stochastic Effects: Real-world epidemics often involve random 
fluctuations. Extending the model to include stochastic fractional derivatives could 
enhance its applicability. 

• Network-Based Models: Applying the framework to contact networks or spatially 
distributed populations would provide a more detailed understanding of disease 
spread. 

• Parameter Estimation Techniques: Developing efficient methods for estimating 
fractional order α and other parameters from real-world data is critical for practical 
applications. 
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• Comparison with Other Fractional Operators: Investigating the impact of 

different fractional derivatives on the model’s performance could provide further 
insights into memory effects. 

• Integration with Machine Learning: Combining fractional models with machine 

learning approaches could enhance predictions and provide real-time insights for 

decision-making. 
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